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COMMENT 

Exact analytical solutions for the cut-off Coulomb potential 
V( r )  = -Ze'/( r + p )  

Anjana Sinha and Rajkumar Roychoudhury 
Electronics Unit, Indian Statistical Institute, Calcutta 700035, India 

Received 2 May 1990 

Abstract. We derive exact analytical solutions for the cut-off Coulomb potential V( r )  = 
- Z e 2 / ( r +  p ) .  The solutions are derived using the known results of supersymmetric quantum 
mechanics and it is found that exact solutions exist when p and I satisfy a supersymmetric 
constraint. Our results have been compared whenever possible with the published 1/ N- 
shifted expansion results. 

Of late the formalism of supersymmetric quantum mechanics (SUSYQM) has been 
employed to determine exact analytical solutions of the Schrodinger equation both in 
one and three dimensions (1)-(3). The method depends on the construction of a 
superpotential so that the SUSY potential can be compared with the potential whose 
solution is sought. In this comment we would find exact solutions for the cut-off 
Coulomb potential V(r) = - Z e ' / ( r + p ) ,  p > 0 both for 1 = 0 and 1 # 0 when p and 1 
satisfy some constraints. This potential has been taken as an approximation due to a 
smeared charge distribution and was considered for describing mesonic atoms [ 51. 
There have been numerical studies, including a shifted 1/N expansion to calculate 
the eigenvalues for this potential [6], but so far as we know an exact solution for a 
wide range of values of 1 has not been presented before. Before applying SUSYQM we 
recall that in one dimension a SUSYQM Hamiltonian consists of a pair of Hamiltonians 
~ 7 1 ,  

H = {Q+, 01. (1) 

Using explicit expressions for Q and Q' [l], H can be written as 

where 

d2 
dx2 

H+ = --+ V+(X) 

d2 
dx2 

H- = --+ V-(X) 

with 

V*(x) = W2(X)* W'(X). 

(3) 

(4) 

( 5 )  
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The wavefunctions on which H operates are two-component column vectors of the 
form 

It may be pointed out that the ground state 14’) is always annihilated by the 
supercharges : 

0 I Q O )  = 0’1 Q ’) = 0. 

From (7) it follows that the ground state wavefunctions are of the form 

where 

qO(x)-exp( * J’ W(r) dr). 

(7) 

If eit..er of q;(x) is normalisable then supersymmetry is ur.,roken and t..e ground 
state energy is zero. Let us now turn to the choice of the superpotential. Now the 
radial Schrodinger equation for any radially symmetric potential V (  r )  can be written 
as (after multiplying both sides by two and taking h = m = c = l ) ,  

Putting $ = r - l 4 ( r )  this can be written as ( V ,  = V + [ Z ( l +  1)/2r2]) 

~ + [ 2 E  - 2  V , ( r ) ] q ( r )  = 0.  
dr2 

For V ( r )  = - Z e ’ / ( r + p )  we make the following ansatz for the superpotential 

+b.  
c 1  

W(r)=-+-+ - 
r r + p  i = l  r - g ,  

We now identify the (+) sector (i.e. W2+ W )  with the effective potential term in (9). 
First consider the case N = 0 

If we now set 

Z(l+l) 
r2 

V+(r)  - E +  = 2 V (  r )  +-- 2E 

we must have 

C(C - 1)  = ] ( I +  1)  

b = - I / P  

b - C/p  = -Ze2 

and 

2 E  = E+ - b2. 
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From (14) C = - I  or I +  1. We take C = I +  1 to make exp [ w ( r )  dz] normalisable. 
Then solving (15), (16) and (17) we get 

where we have taken E+=O, for the ground state supersymmetric energy. The nor- 
malised eigenfunction for the above case is given by 

+ ( r )  = N r ' + ' ( r + p )  e-"p (19) 

N-' = [ ~ ~ ~ + ~ ( 2 2  +4)(21+-7)r(21+ 3)/221+5]1/2. (20) 

where 

Some numerical results are given in table 1 to compare our results with the 1/ N-shifted 
expansion result ( 5 )  whenever possible. 

Next consider the case N = 1. Here 

+b, c 1  W=--+-+-  
r r + p  r - g ,  

Proceeding as before we obtain 

C = l - t l  

1 Ze2 

Ze2 
1 + 3  

b=--  

and 

E=--( - )  1 Ze2 
2 1+3 

and the relation between P and 1 is given by 

P =  (26) 

In table 2 we give some numerical results for positive g , .  A positive value of g ,  
gives a node in the wavefunction and hence gives the results for the first excited states. 

(312+ 151 + 18) * [ (312 + 151 + 18)2 - 4( 1 + 2)(213 + 1512 + 361 + 27)]"2 
2(1+2) 

Table 1. Some numerical results. E* are the exact supersymmetric results, and E +  are the 
11 N-shifted expansion results obtained from [5]. 

1 P E* E+ 
~~ 

0 2 -0.12500 -0.124858 
1 3 -0.05555 -0.05554 
2 4 -0.03125 -0.03125 
3 5 -0.02000 -0.019199 
4 6 -0.01388 
5 I -0.01020 
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Table 2. Some numerical results for positive g, 

1 -0.03125 2.945 11.166 

2 -0.02000 3.964 19.142 

3 -0.01388 4.975 29.125 
4 -0.00102 ~ a 2  41.111 
5 -0.00781 6.986 55.100 

( -0.03105)a 

( -0.0199qb 

a The 1/N-shifted expansion value for P = 3. 
The 1/ N-shifted value for P = 4. 

The eigenfunction for the above solution is given by ( b  < 0) 

+= Nr'+'(r+P)(r-gl) ebr (27) 

where 

N-'  = {(-2b)-'2"7'[r(21 + 7) - 4b(P - g1)r(21 +6)  + 4b2(p2 -4Pg1 + g:) 

x r ( 2 1 + 5 ) -  16b3g1(g1-P)p~(21+4)+16b4g~/3Zr(21+3)]}1'2. (28) 

For the general case when W( r )  is given by (1 1) the parameters C, gi and b are given 
by 

C=Z+l (29) 
1 N 1  b+-- -=o  
P i = l  gi 
C N  1 
P i = l  P+gi  

- 0. 
c 1  

b+-+-+ -- 
gi gi+P ji.igi-gj 

- -Ze2 c -- b--- 

1 

The corresponding wavefunction is given by 
N += ~ r ' + ' ( r + ~ )  ebr (r-gi)  

i = l  
(33) 

where N is the normalisation constant. Thus, in principle, one can obtain an arbitrary 
number of exact solutions by solving the above equations. Solutions obtained by the 
numerical perturbation method can always be checked against these exact solutions. 
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